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ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) infection or known as coronavirus disease 2019 (COVID-
19) is a highly infectious disease that has been declared as a world pandemic by WHO. Although the majority of patients 
only experience mild symptoms, older patients and those with comorbidities are in the risk of falling into critically 
ill and even death. This is thought to correlate with systemic inflammatory response and oxidative stress imbalance. 
N-acetylcysteine (NAC) is recognized as a potent mucolytic, yet its lesser-known function as an antioxidant is a precursor 
of glutathione. Basic aspects and either in vivo or in vitro studies showed various mechanisms of NAC acting as a coun-
terbalance in viral infections and its role in decreasing inflammation and oxidative stress. High-dose NAC is reported to 
be effective as an antioxidant in pneumonia, influenza, sepsis, and acute respiratory distress syndrome. Early evidence in 
COVID-19 patients showed that NAC could be beneficial. This review gives the scientific background in considering NAC 
as an adjuvant treatment for COVID-19.

Keywords: Antioxidant; coronavirus disease-19; glutathione; N-acetylcysteine; oxidative stress

INTRODUCTION
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV2) is a novel coronavirus that causes an ongoing world 
pandemic of coronavirus disease 2019 (COVID-19) (1). 
Common symptoms are respiratory symptoms such as 
fever, cough, dyspnea, fatigue, and muscle sore. Majority 
of COVID-19 patients experience mild to moderate symp-
toms; meanwhile, 9-14% experience severe symptoms and 
5% fall into critical conditions such as respiratory failure, 
acute respiratory distress syndrome (ARDS), septic shock, 
and multiple organ dysfunctions (2,3). ARDS and sepsis 
that happen in COVID-19 patients are induced by severe 
inflammatory reaction that involves cytokines and chemo-
kines storm (4-5). Higher risks of ARDS and sepsis that 
ultimately will lead to deaths are found in older patients 
and those with comorbidities such as diabetes mellitus, car-
diovascular diseases, chronic lung diseases, and cancer (6).
One of the biologic processes that are often found in older 
people or those with comorbidities is the decreasing level of 
endogen glutathione (GSH) due to chronic inflammation 
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from oxidative stress and inflammatory cytokines (7). Previous 
studies reported a declining of GSH level in COVID-19 
patients caused by oxidative stress and antioxidant imbal-
ance (8). GSH is a commonly found antioxidant in human 
body cells, especially in the epithelial lining fluid (ELF) of 
airway that helps to reduce the inflammatory process in the 
lungs (9). We review how oxidative stress happens in COVID-
19 and the role of N-acetyl cysteine (NAC) as a precursor of 
GSH and antioxidant in adjuvant treatment of COVID-19.

OXIDATIVE STRESS IN COVID-19
Oxidative stress is a phenomenon caused by an imbalance 
between production and accumulation of reactive oxygen 
species (ROS) in cells and tissues that will lead to cell dam-
age (10). The pathophysiology of inflammation caused by 
viral infection is a complex chain reaction, but it has been 
proposed that viral infection is an insult that initiating 
inflammation that involves the activation of cellular immu-
nity and release of inflammatory mediators and intra and 
extracellular toxic oxygen free radicals (11). Stress oxidative 
is also thought to be related to the pathogenesis, progressiv-
ity, and clinical severity of SARS-CoV2 infection (12,13), 
Animal study showed an increasing level of ROS and anti-
oxidant imbalance in SARS-CoV-induced ARDS (14). 
Oxidized environment ROS and antioxidant depletion, 
including GSH, are needed by the virus to replicate and to 
evade the immune system (12).
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One of the mechanisms that trigger ROS production is 
the activation of nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase (NOX) by angiotensin II (Ang 
II) (15,16). It has been known before that SARS-CoV2 
strongly binds to ACE2 receptor compared to SARS-CoV 
(17). ACE2 bioavailability decreases due to the binding, 
thus causing Ang II binds to type 1 angiotensin (AT1R) 
instead, stimulating the activation of NOX, ROS produc-
tion, and inflammatory responses (18,19). NADPH oxidase 
activation is confirmed by the overexpression of NOX2 in 
COVID-19 patients (20). On the contrary, NOX inhibi-
tion in animal macrophages showed a reduction of oxida-
tive stress and improvement of the disease (21).
SARS-CoV2 infection also causing an imbalance of redox 
by inducing down-regulation of nuclear factor erythroid 2 
related factor 2 (Nrf2). The transcription factor Nrf2 plays 
a role in adaptation of cells under oxidative stresses envi-
ronment. In the oxidative environment, Nrf2 stimulates 
transcription of the target genes with antioxidant response 
and redox homeostasis (22,23). Activation of these genes 
prevents expression of the inflammatory cytokines and 
activation of the macrophage inflammasomes (24,25). A 
study in lung biopsies from COVID-19 patients shown 
suppressing Nrf2 pathway; conversely, induction of Nrf2 
increases antioxidant elements and reduces the inflamma-
tory response (26).
ROS production is also stimulated by pro-inflammatory 
mediators (27). SARS-CoV2 phagocytosis by phagocytic 
cells such as neutrophils and macrophages activate tran-
scription factors to produce a large amount of ROS and 
reactive nitrogen and chlorine species including superoxide, 
hydrogen peroxide, hydroxyl free radical, nitric oxide, per-
oxynitrite, and hypochlorous acid to kill the virus (28,29). 
Besides, the nonphagocytic cells can also produce ROS in 
response to pro-inflammatory cytokines (30). Some studies 
showed elevated cytokine pro-inflammatory production in 
severe COVID-19 patients, including interferon (IFN) γ, 
monocyte chemoattractant protein-1, granulocyte-macro-
phage colony-stimulating factor, macrophage inflamma-
tory protein 1α, tumor necrosis factor-alpha (TNF-α), 
and pro-inflammatory chemokines (31-34). These pro-in-
flammatory mediators disorderly reactivate mononuclear 
phagocytes such as macrophages that lead to hyperinflam-
mation (35). Shao et al. observed an increase in oxidative 
stress-sensitive gene expression in mononuclear peripheral 
blood cells of SARS-CoV-infected patients. This result 
shows that oxidative stress and SARS-COV infection are 
interdependent (36).
Just as oxidative stress can be induced by inflammation, 
it can also stimulate inflammation through the activation 
of complex pathways. ROS activation is triggered by the 
activation of transcription factor NF-κB. Oxidative stress 
could also induce the activation of NOD-like receptor 
protein 3 (NLRP3) inflammasome, a protein that trig-
gers innate immune activation through the maturation of 
pro-inflammatory cytokines (37-39). NLRP3 was observed 
as a predisposing factor for cytokine storms in COVID-19 
patients (34). Activation of the inflammasome also triggers 
pyroptosis and cell damage (40).
Other mechanisms associated with oxidative stress 
in COVID-19 are hemoglobinopathy and iron 

dysmetabolism  (41). This mechanism occurs due to the 
SARS-CoV2 virus attacking the hemoglobin of erythrocyte 
cells, thereby releasing free Fe ions in the blood and increas-
ing blood ferritin levels (42,43).

THE MECHANISM OF NAC AS AN ANTIOXIDANT
GSH, a tripeptide compound γ-L-glutamyl-L-cysteinyl-gly-
cine or GSH, is the most important antioxidant produced by 
living cells. A study showed that severity of COVID-19 clin-
ical manifestations might be associated with decreased GSH 
levels and increased ROS. Severe COVID-19 cases are asso-
ciated to lower GSH levels, higher ROS levels, and higher 
redox status (ROS/GSH ratio) than mild-moderate cases 
(7). Cysteine in GSH has a sulfhydryl/thiol group (-SH), 
which has the ability to reduce and conjugate in the removal 
of other peroxides and xenobiotics (44). Cysteine is also a 
substrate that determines the rate of GSH synthesis. That is, 
when there is oxidative stress in COVID-19, GSH synthe-
sis will increase through the Nrf2 activator and, of course, 
requires the availability of adequate cysteine (45). NAC 
works as an oxygen-free radical scavenger and also reload 
depleted GSH stores, enhancing the endogenous antioxidant 
defense. In experimental animals infected with influenza, 
NAC can promote GSH production (46). N-acetyl cysteine 
works as an antioxidant directly or indirectly by releasing its 
cysteine or thiol groups or by breaking sulfide bonds. NAC 
easily penetrates cells where it is deacetylated to L-cys so that 
it can be a GSH precursor in the cell (47).
Although studies related to oxidative stress on SARS-CoV2 
are still limited, similar studies for the SARS virus can be 
used as a comparison. The cytokine profile in the inflamma-
tory response that occurs in SARS is almost similar as that 
in a patient with COVID-19, which generates an immune 
response involving diverse pro-inflammatory cytokines 
(interleukins, TNF, and IFNs). Type-I IFNs are suppressed 
during SARS-CoV infection which at last antagonizes IFN, 
causing delayed IFN. NAC can strengthen the role of toll-
like receptors 7 and antiviral signaling protein in restoring 
type-I IFN production in COVID-19, thus reducing the 
process of oxidative stress (48). The antioxidant effect of 
NAC can also be in the form of inhibition of the activation 
of the transcription factor NF-κB as demonstrated in in 
vitro influenza (A and B) models (49). Activated NF-κB 
will produce various inflammatory cytokines which then 
further activate cellular immunity, infiltrate macrophages 
and neutrophils, and trigger cytokine storm.
The action mechanism of NAC can also originate from inhi-
bition of SARS-CoV2 binding to its receptor. The envelope 
protein of SARS-CoV has sequence similarity with that of 
SARS-CoV2. It consists of a triple cysteine structure con-
nected through disulfide bonds and NAC may cleave these 
bonds. This may decrease viral infectivity (50). In vivo study 
has shown how NAC can inhibit ACE. Administration 
of isosorbide dinitrate which has vasodilator activity was 
administered for 48 h, then at 24 h NAC was added. There 
was a significant depletion of Ang II plasma concentrations 
after 2 h NAC addition (51). Another in vitro study also 
demonstrated inhibition of Ang II production by reducing 
Ang II binding with Ang II type 1 receptor in a dose-de-
pendent manner (52). Several action mechanisms of NAC 
in treating COVID-19 can be seen in Figure 1.
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FIGURE 1. Schematic representation of potential mechanisms of NAC as antioxidant and anti-inflammatory in SARS-CoV2 infection. NAC: N-acetylcysteine, 
SARS-CoV2: Severe acute respiratory syndrome coronavirus 2, ACE2: Angiotensin-converting enzyme 2, Ang II: Angiotensin II, GPx: Glutathione perox-
idase, GSSG: Glutathione disulfide, GSH: Glutathione, L-Cys: L-Cysteine, NF-κB: Nuclear factor-κB, NrF2: Nuclear factor erythroid 2-related factor 2, 
NADPH: Reduced nicotinamide-adenine dinucleotide phosphate, ROS: Reactive oxygen species, TNF-α: Tumors necrosis factor-alpha, IL: Interleukin, 
PGE2: Prostaglandin E2, IFN-γ: Interferon-gamma.

APPLICATION AND TRIAL NAC IN COVID-19
NAC in COVID-19 is administered empirically based on 
its efficacy from previous studies on influenza, pneumonia 
as well as severe cases such as acute lung injury or ARDS. 
Multicenter, a double-blind trial in Italy, reported that 
administration of NAC 600 mg twice daily for 6 months 
during winter shows a significant attenuation of influenza 
and influenza-like episodes, particularly in high-risk indi-
viduals. There were 25% of patients under NAC arm had 
symptoms while 79% symptomatic patients in the pla-
cebo arm. NAC reduced the symptoms even though did 

not prevent the disease (53). Another small RCT study 
performed by giving high doses of NAC 1200 mg/day for 
10 days in community-acquired pneumonia patients has 
shown improvement in oxidative stress and inflammatory 
variables but not radiological changes compared to stan-
dard care only. No clinical outcomes were reported (54).
A systematic review of assigning NAC to ARDS included 
eight trials totaling 289 patients, concluding that NAC 
shortened intensive care unit length of stay but did not 
decrease the overall mortality. Duration of mechanical ven-
tilation, GSH levels, and hypoxemia severity could not be 
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Clinical trials regarding the role of NAC in COVID-19 are 
still needed.
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• Need for hospitalization
•  Outpatients on NAC needing admission to the 

hospital
• Recovery disposition

Inflammatory regulation effect of NAC on COVID-
19 treatment (INFECT-19) (59)

NCT04455243 
Phase 3

NAC 150 mg/kg every 12 h 
for 14 days 
 (oral/intravenous)
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