ABSTRACT

Introduction: Air pollution occurs when the concentration of certain substances (pollutants) reaches a size which causes its toxicity, or in other words, begins to cause harm to human health, flora and wildlife.

Methods: Measurements were performed in the period from 2005 to 2010, at the measuring point Bjelave-Sarajevo by the method of Griess-Saltzmann. It encompasses the following parameters: NO, NO2, NOx, measured concentrations of pollutants in the atmosphere reduced to normal atmospheric conditions of 293 K (Kelvin) and pressure of 101.3 kPa (kilopascal).

Results: NO concentration in the period from 2005 to 2008 was above the permitted value, but the results of research in the period between 2009 and 2010, have shown that there was a decrease in NO concentration in the atmosphere. Measurements show that the concentration of this pollutant is currently declining, which is a positive result compared to the pollution of the atmosphere by nitrogen monoxide. Furthermore, the results of the research showed that the concentration of NO2 for the period of 2005 to 2010, is in the limited values, and that has a decreasing trend, which is also a positive result compared to the pollution of the atmosphere by nitrogen dioxide. Related to the total concentration of NOx in the atmosphere, the results of the research show that their representation corresponds to the limit values existing in the Rulebook on limit values for air quality.

Conclusion: The results of the research for the pollution of the atmosphere by nitrogen oxides in the investigated area show that the amount of nitrogen oxides in the atmosphere is in constant decline.

Keywords: atmosphere, pollution, nitrogen, nitrogen oxides.

INTRODUCTION

The environment is a specific medium in which easiest thing is recognizing negative human activities (1).

*Corresponding author: Prof. Dr. Suad Habeš, Faculty of Health Studies, University of Sarajevo, Bolnička 25, 71000 Sarajevo, Phone: +387 61 228 003; E-mail: hsuad@hotmail.com

Submitted 4 August 2013 / Accepted 20 November 2013

Therefore, the increase in public interest in thematic areas of protecting the nature and improvement of environmental conditions is apparent. Development of awareness of the citizens is evident through increased interest in environmental activism with goal of solving general and specific problems. Most of the pollutants that pollute the atmosphere originate from industrial activities, but a significant part originates from the traffic (2). Before the war in our
country, industry was the most significant air pollut-
ant. Most industrial plants have stopped operating
during the war and still have not reached pre-war
level. As a result, it is expected that the pollution of
the atmosphere is now much lower. Environmental
sustainability implies that the degree of pollutants
that are emitted, do not overcome the ability of air,
water and land to absorb and process them (3). At
the same time this implies a permanent conserva-
tion of biological diversity, human health, and the
quality of air, water and land, according to the stan-
dards that are still sufficient for the life and well-
being of people, and the preservation of flora and
fauna (4). Air pollution is created by emissions of
harmful gaseous and particulate matters, usually as
a result of human activity, but also from the emis-
sions from natural sources (5). During the burn of
the fuel in all furnaces and engines, formation of
nitrogen oxides at high temperatures occurs (6). In
addition to the two basic components that make up
the atmosphere: oxygen (circa 20%) and nitrogen
(circa 78%), small amounts of gases, vapors and par-
ticles are naturally present in the atmosphere (7). If
in the air, same or other components in concentra-
tions which are higher than naturally present con-
centration occur, then we have the pollution of air
appearance. This phenomenon came to the expres-
sion in the previous and current century due to the
rapid development of industry, energetic and traffic.

METHODS

Concentration of nitrogen oxides NO and NO2 and
total nitrogen oxides NOx was determined by
the Griess-Saltzmann method, with the help of au-
tomatic station for measurement. Method by Griess-
Saltzmann is based on standard techniques of col-
collecting samples in the absorbing solution, in which
the nitrogen is determined spectrophotometrically.
The air is vacuumed through the absorbing solution,
which was consisted of sulfanilic acid. Nitrogen
dioxide from the air first reacts with sulfanilic acid
forming diazonium salt. That salt combines with the
N-(l-naphthyl)-ethylene-diamine-dichloride giving
an intense red-purple color, from which the concen-
tration is directly proportional to the concentration
of NO2 concentration. Due to the rapid formation
of the color, sampling time is not more than 30
minutes. The method is suitable for determining the
concentration of atmospheric NO2 - oxide from 40
to 1500 g/m3. This method is adapted to the auto-
matic analysis used by the automatic station Bjelave.
Also, this method determines NOx, in other words;
sum of NO + NO2, with condition that the sample
was previously released through the KMnO4 solu-
tion which performs the oxidation of NO to NO2.
Calculated concentrations of NO and NO2 in the
atmosphere are reduced to normal atmospheric con-
ditions of 293 K (Kelvin) and pressure of 101.3 kPa
(kilopascal).

Displayed values for nitrogen oxides (24 - hour
samples) obtained by this method are compared
with the limit values prescribed by the Regulation
on limit values for air quality (11). The study used
the data from the Federal Hydrometeorological In-
stitute BiH in the period from 2005 to 2010.

RESULTS

In accordance with the established dynamics and
methodology of the research, measurement of atmo-
spheric pollution by nitrogen oxides was conducted in Sarajevo at the measuring station Bjelave period from period of 2005th to 2010th year. All data are appropriately processed and presented in tables and graphs. The results are compared with the limit values prescribed by the Rulebook on air quality (GV) in aim to protect human health (Table 1) and the limit values of air (GV) in order to protect the ecosystem (Table 2).

By using automatic station Bjelave, concentrations of pollutants NOx, NO2, NO, are obtained, which are presented as the mean annual value-CSR, maximum hourly value-Cmax and percentile values-C-50, C-95, C-98, C-99.9. Percentile values indicate the number of exceeding concentration of some pollutant in a specified number of hours in a year. In the course of one year is 8760 hours, and the C-50 = 4380 hours, C-95 = 438 hours, C-98 = 175 hours = 99.9 C-9 hours. In the stated tables, number of samples taken in the course of one year is given, as well as the percentage of valid samples (Source: Automated station Bjelave - Sarajevo).

In Table 3, the highest maximum concentration value is measured in year 2005 and amounted was 692 g/m³ and the maximum measured mean value of nitric oxide was 43 g/m³ and it was measured in year 2005. Shown values of NO concentration in Table 3 do not meet the limit values prescribed by the Rulebook on limit values for air quality. In Table 4 we see that in 2005 the highest maximum concentration of nitrogen dioxide was measured and
it was 299 g/m³, as well as the largest annual mean concentration which was 26 g/m³. The minimum values were measured in the 2010 year. Cmax was 119 g/m³, while in the year of 2009 Csr was 9 g/m³. Shown concentrations of NO2 shown in the Table 4 correspond to limit values prescribed by the rulebook.

In the Table 5, we see that in the 2005, the highest concentrations of nitrogen oxides was measured, in the reporting period. The maximum concentration of NOx was 692 g/m³ and the average concentration was 43 g/m³. Shown concentrations of total nitrogen oxides in Table 5 correspond with the values specified in the Rulebook on air quality values limit.

Chart 1 shows the average annual concentration of NOμg/m³ for the period of 2005 to 2010. From the shown chart we can see that the highest concentration of NO was in 2005 and it was 43.22%, however, the lowest was measured in 2009 and it was 20.10%.

In the Figure 2, we can see that the average annual concentration of NO2μg/m³ for the period of 2005 to 2010. From the given chart we can see that the highest concentration of NO2 was in 2005, and it was 26.25% and the lowest in 2009 amounted to 9.9%.

DISCUSSION

This paper presents the results of research of pollution of the atmosphere by nitrogen oxides in the Sarajevo area. Measurements included the period from 2005 to 2010 at the meteorological station at Bjelave. For grading the state of the pollution of the atmosphere by nitrogen oxides analysis of the following parameters were performed:

- Nitric oxide, NO
- Nitrogen dioxide, NO₂
- The total nitrogen oxides NOₓ

By analysis of the concentration for nitric oxide, we can see that the highest maximum and the highest average annual value of the concentration was measured in 2005. The highest measured value of nitrous oxide was 692μg/m³. Average annual nitrogen oxide value is 43μg/m³, which is more than the
limit value of 40 μg/m³. Obtained concentrations of nitrous oxide did not meet the limit values that were prescribed by the Rulebook on limit values for air quality. Concentrations of nitrogen dioxide matched the limit values prescribed in the Rulebook on air quality. In 2005, the highest measured maximum concentration of nitrogen dioxide was 299 μg/m³, and in 2005, the measured maximum annual mean concentration was 26 μg/m³. The minimum values were measured in 2010. Cmax was to 119μg/m³, and in 2009Csr was9 μg/m³ in.

Concentrations of total nitrogen oxides did not exceed the prescribed GV Rulebook on air quality for the entire observed period. In the 2005, the highest concentrations in total nitrogen oxides were measured. Maximum NOx concentration was 692 μg/m³, and the average concentration was 43 μg/m³.

CONCLUSION

Based on the research results of pollution of the atmosphere by nitrogen oxides in the measuring station Bjelave area, we came up with the following conclusions:

Concentration of NO in the period from 2005 to 2008 was above the allowed value, but in the period since 2009 to 2010, there was a decline in the concentration below the limit value.

Concentration of NO2 in the period from 2005 to 2010 was in limit values and had a decreasing trend, which is also a positive result compared to the pollution of the atmosphere.

Given the above, conclusion is that the concentration of nitrogen oxides, in the atmosphere of the investigated area, is in the allowed value margins prescribed by the Rulebook on limit values for air quality, and the amount of nitrogen oxides in the atmosphere of the area is in a constant decline.

In order for conditions of living and working in Sarajevo, on the issue of pollution of the atmosphere by nitrogen oxides to be enhanced it is necessary to modernize and diversify monitoring atmospheric pollution by nitrogen oxides and to improve the quality of traffic in selection of vehicles on the roads, by checking the quality of fuel and the use of green fuels.

COMPETING INTERESTS

The authors declare no conflict of interest

REFERENCES

1. Aliwell SR, Jones RL. Measurements of troposphere NO3 at midlatitude, J Geophys Res 1999;103:5719-5727,
8. Zakon o zaštiti zraka («Službene novine Federacije BiH», broj: 33/03)
11. Pravilnik o graničnim vrijednostima kvaliteta zraka član. 27, stav (1), i član 38, stav (2). Zakona o zaštiti zraka («Službene novine Federacije BiH», broj: 33/03)